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Abstract-Parallelization is a core strategic-planning 
consideration for all software makers, and the amount of 
performance benefit available from parallelizing a given 
application (or part of an application) is a key aspect of setting 
performance goals for the parallelization process. Theoretical 
discussions of performance potential are necessarily the 
starting point for understanding the critical issues involved, 
before moving to practical issues associated with a given 
project. Amdahl's Law and its modification by Gustafson's 
trend give us the basic means to understand what's possible for 
a given application, and tools and best practices give us the 
means to decide how to use that information in practice. 

Key words: Parallel computing; parallel processing; parallel 
speedup; parallel efficiency; Gustafson's Trend 

 
OVERVIEW 

Parallel computers consisting of thousands of processors are now 
commercially available. These computers provide many orders of 
magnitude more raw computing power than traditional 
supercomputers at much lower cost. They open up new frontiers in 
the application of computers—many previously unsolvable 
problems can be solved if the power of these machines is used 
effectively Analyzing the performance of a given parallel 
algorithm/architecture calls for a comprehensive method that 
accounts for scalability: a measure of a parallel system’s capacity 
to effectively utilize an increasing number of processors. There has 
been extensive work in investigating the performance and 
scalability properties of large scale parallel systems and several 
laws governing their behavior have been proposed.  
This paper provides an overview of Amdahl's Law and Gustafson's 
Trend, placing them in the context of current development 
considerations 
 

THE PERFORMANCE OF PARALLEL ALGORITHMS EXECUTED ON 

MULTIPROCESSOR SYSTEMS 

The first criterion taken into consideration when the performances 
of the parallel systems are analyzed is the speedup used to express 
how many times a parallel program works faster than a sequential 
one, where both programs are solving the same  
problem. The most important reason of parallelization a sequential 
program is to run the program faster.[1] 
The speedup formula is 

 
 
Where Ts is the execution time of the fastest sequential program 
that solves the problem 

 Tp is the execution time of the parallel program used to finalize 
the same problem. 
       If a parallel program is executed on a computer having p 
processors, the highest value that can be obtained for the speedup 
is equal with the number of processors from the system. The 
maximum speedup value could be achieved in an ideal 
multiprocessor system where there are no communication costs 
and the workload of processors is balanced. In such a system, 
every processor needs Ts/p time units in order to complete its job 
so the speedup value will be as the following: 

 
There is a very simple reason why the speedup value cannot be 
higher than p – in such a case, all the system processors could be 
emulated by a single sequential one obtaining a serial execution 
time lower than Ts. But this is not possible because Ts represents 
the execution time of the fastest sequential program used to solve 
the problem. 
                  
  According to the Amdahl law, it is very difficult, even into an 
ideal parallel system, to obtain a speedup value equal with the 
number of processors because each program, in terms of running 
time, has a fraction α that cannot be parallelized and has to be 
executed sequentially by a single processor. The rest of (1 - α) will 
be executed in parallel. 
 
The parallel execution time and the speedup will become: 

 
When  p          ∞ , we have 
 

 
The maximum speedup that could be obtained running on a 
parallel system a program with a fraction α that cannot be 
parallelized is 1/ α, no matter of the number of processors from the 
system. 
       For example, if a program fraction of 20% cannot be 
parallelized on a four processors system, the parallel execution 
time and the speedup will be equal with: 
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The parallel execution time will be 40% of the serial execution 
time and the parallel program will be only 2.5 times faster than the 
sequential one because 20% of the program cannot be parallelized 
(figure 1). The maximum speedup that we can obtain is 1/0.2 = 5 
and this means that the parallel execution time will never be 
shorter than 20% of the sequential execution time even in a system 
with an infinite number of processors. 
 
Amdahl law concludes it is very important to identify the fraction 
of a program than cannot be parallelized and to minimize it. 
The parallel efficiency quantifies the number of the valuable 
operations performed by the processors during the parallel program 
execution. The parallel efficiency could be expressed as the 
following: 

 
Where S is the speedup and p represents the number of the 
processors or cores from the system. 

 
Fig.1. Parallel execution on an ideal system 

 
Due to the fact the speedup value is lower than the number of 
processors; the parallel efficiency will be always located between 0 
and 1. 
Another important indicator is the execution cost representing the 
total processor time used to solve the problem. For a parallel 
application, the parallel cost could be calculated according with the 
following formula:[2] 
 

 
For a sequential program, its cost (sequential cost) will be equal 
with the total execution time: 

 
For this reason, the parallel efficiency could be also expressed as 
the following: 
 

 
 
Finally, the supplementary cost of parallel processing indicates the 
total processor times spent for secondary operations not directly 
connected with the main purpose of the program that is executed. 
Such a cost cannot be identified for a sequential program. 

 
The figure 2 presents the way in which a parallel program will be 
executed on a real 4 processor system. This time, the program 
contains a fraction of 20% that cannot be parallelized, the load of 
the processors is not balanced and the communications times are 
not neglected anymore. 

 
Fig.2. Parallel execution on a real system 

 
The source of this type of cost is represented by the following 
elements: 
 Load imbalance – is generated by the unbalanced tasks that 

are assigned to different processors. In such a case, some 
processors will finish the execution earlier so they need to 
wait in an idle state for the other tasks to be completed. Also, 
the presence of a program fraction that cannot be parallelized 
generates load imbalance because this portion of code should 
be executed by a single processor in a sequential manner. 

 Supplementary calculations – generated by the need to 
compute some value locally even if they are already 
calculated by another processor that is, unfortunately, busy at 
the time when these data are necessary.-  

 Communication and synchronization between processors 
– the processors need to communicate each others in order to 
obtain the final results. Also, there are some predefined 
execution moments when some processors should 
synchronize their activity.  

 
In order to obtain a faster program, we can conclude we need to 
reduce to the minimum the fraction that cannot be parallelized, to 
assure the load balance of the tasks at the processor level and also 
to minimize the times dedicated for communication and 
synchronization. 
 
Gustafson: Adding Due Consideration for Large-Scale 
Resources and Tasks 

Amdahl shows that increasing the parallelism of the computing 
environment by some number N (e.g., providing N times the 
number of processors or cores) can never increase performance by 
a factor of N. The two main factors contribute to this limitation are 
the presence of the inherently serial portion of the computational 
load (the performance of which cannot be improved by 
parallelization) and the overhead associated with parallelization. 
That overhead consists of such factors as creating and destroying 
threads, locking data to prevent multiple threads from 
manipulating it simultaneously, and synchronizing the 
computations performed among various threads to obtain a 
coordinated result.  
Amdahl's Law [3], quantifies the theoretical speedup that can be 
obtained by parallelizing a computational load among a set number 
of processors. Another way of expressing that relationship is given 
in Equation 1. 
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Equation 1. Representation of Amdahl's Law 

 
A simplified case of Equation 1 helps to illuminate the relationship 
being shown. 
Consider the equation with S (the serial, un-parallelizable portion 
of the workload) equal to zero, meaning that the workload is fully 
parallelizable; in this case, the speedup is equal to N + ON.  
Further simplifying that expression by setting ON equal to zero 
(removing the parallelization overhead) reduces the equation to 
Speedup (N) = N. Therefore, for example, if one neglects both the 
serial component of the workload and the parallelization overhead 
(the ideal case), the speedup from splitting a workload from one 
processor onto two processors produces a speedup of 2x, splitting 
it onto eight cores would yield a speedup of 8x, etc.  
Further, viewing Equation 1 as the subtraction of ON from a 
complex fraction, the complex fraction represents the speedup 
without being adjusted for threading overhead.  

 
To illustrate the limitations on possible performance gains from 
parallelizing workloads (which was Amdahl's actual intent), 
consider the effect on Equation 1 when N tends toward infinity  
and ON tends toward zero. That represents the case where infinitely 
parallel processing capacity is available, without any overhead 
from parallelization, and it therefore demonstrates the theoretical 
upper limit to the performance increase available from 
parallelization. As N becomes infinitely large, the expression (1 - 
S) / N becomes infinitely small, so that the specialized case of 
Equation 1 with infinitely parallel resources and zero 
parallelization overhead is reduced to the expression shown in 
Equation 2.  

 
Equation 2. A specialized case of Amdahl's Law with infinitely 
parallel execution resources and zero parallelization overhead 

 
In 1988, John Gustafson, working with E. Barsis, helped to refine 
Amdahl's model by adjusting some of its underlying assumptions. 
That is, whereas Amdahl's Law indicates that the speedup from 
parallelizing any computing problem is inherently limited by the 
presence of serial (non-parallelizable) portions, Gustafson's Trend 
posits that this is an incomplete relationship. Gustafson argues that, 
as processor power increases, the size of the problem set also tends 
to increase. To cite one obvious example: as mainstream 

computational resources have increased, computer games have 
become far more sophisticated, both in terms of user-interface 
characteristics and in terms of the underlying physics and other 
logic. 
Simply, as compute resources increased, the problem size also 
increased, and the inherently serial portion became much smaller 
as a proportion of the overall problem. Because Amdahl's Law 
cannot address this relationship, [5] Gustafson modifies Amdahl's 
work according to the precept that the overall problem size 
should increase proportionally to the number of processor cores 
(N), while the size of the serial portion of the problem should 
remain constant as N increases. The result is shown in Equation 3 
 
Equation 3. A computational representation of Gustafson's 
Trend 
 

 
 
In this equation, note first that S represents the serial proportion of 
the unscaled workload; that is, unlike in Amdahl's Law (Equations 
1 and 2), S remains steady in the numerator versus denominator as 
a quantity of work, rather than as a proportion of the overall work. 
That is, while the parallel portion of the workload (1 - S)2 scales 
with the number of processor cores in the numerator of the 
equation, the serial portion (S) does not. Obviously, Equation 3 can 
be easily simplified by adding the components of the denominator 
together, and by doing so as well as eliminating (for the moment) 
the effect of parallelization overhead, Gustafson's trend[4] reduces 
to the relationship shown in Equation 4. 
 
Equation 4. A simpler representation of Gustafson's Trend  

 
 
 
Taking the most extreme case first, according to this simplified 
version of Gustafson's trend, scaling the number of processor cores 
toward infinity should result in a speedup that also scales toward 
infinity. Of course, infinite numbers of cores are not directly 
relevant to real-world implementations, but this relationship is 
instructive as a comparison with Amdahl's Law. To see more 
clearly what the effect of increasing the number of cores on a 
specific workload might be, consider a computational load that is 
10 percent serial, where the serial portion remains a fixed size and 
the parallel portion increases in size proportionally to the number 
of processor cores, as called for in Gustafson's Trend. Table 1 
shows the projected result as the number of processor cores applied 
to the theoretical problem is increased. 
 
Table 1. Gustafson's Trend applied to a hypothetical problem 
being scaled to various numbers of processors 
 
# 
cores 

Computation Speedup Efficiency (speedup 
/ # cores) 

2  0.1 + 2 ( 1 -0 .1)  1.9x  95.00%  
4  0.1 + 4 ( 1 -0 .1)  3.7x  92.50%  
32  0.1 + 32 ( 1 -0 .1)  28.9x  90.31%  
1024  0.1 + 1024 ( 1 -0 .1)  921.7x  90.01%  
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Clearly, these calculations show that the performance result 
continues to scale upward as more processor cores are applied to 
the computational load. It's also worth noting that the per-core 
efficiency trends downward as additional cores are added, although 
the data in Table 1 shows the decrease in per-core efficiency 
between the two-core case and the four-core case to be greater than 
the entire decrease between four cores and 1024 cores. On the 
other hand, this relationship does not take parallelization overhead 
into account, which obviously increases dramatically as the 
number of threads (and therefore the complexity of the associated 
thread management) increases. 
 

CONCLUSION 

Amdahl's and Gustafson's theoretical constructs about the 
performance limits of parallelization are an important foundation 
to our understanding of how future software will manifest the 
power of future hardware. Placed in the context of real-world 
considerations about the overheads associated with software multi-
threading, they illuminate the possibilities that multi-core hardware 
affords individual applications that have been properly 
parallelized. 
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